
1



Most developers, when thinking of testing their applications, think of a very boring task.

2



This also held true for myself and most of my colleagues: we didn‘t like testing either.

3



I always thought of programming as some kind of creative task compared to the

repetitive testing process.

4



When creating a program I could create something new and be constructive. However,

when testing I did quite the opposite: searching for bugs in the program, trying to make

it crash or behave unexpectedly, finding even the smallest flaws in the programmer‘s

work.

5



Additionaly, testing often gets deferred to the latest possible time in a project. And

whatever task is scheduled to be done last is prone to not getting done at all.

6



Sadly, this approach leads to what you may call a „banana product“: it (hopefully) ripes

at the customer‘s office (which means that the customer finds the bugs and complains

about them to you).

So how do we make sure that our programs get tested thoroughly or even get tested at

all?

7



The answer is automated tests for your application: unit tests. Recently, unit testing

became a de facto standard in software development, especially in agile development

processes. It all started with JUnit, a unit test framework for Java, developed by Kent 

Beck and Erich Gamma.

8



But there was no framework for Natural. So a little over two years ago, I developed

NatUnit, a unit testing framework for Natural as part of my Master‘s thesis in software

engineering.

9



Recently, we published the current version of the framework on SourceForge, a web 

platform for hosting Open Source software.

http://sourceforge.net/p/natunit/

10



NatUnit is licensed under LGPL, which means that you can download it for free, use it in 

your production code and develop it further if you like, as long as you mention us as the

original authors of the framework.

11



These are my contact information. Feel free to contact me.

12



I work at ALTE OLDENBURGER AG (AO), a small German private health insurance

company in northern Germany. We have almost 200 employees…

13



…about 20 of which are developers.

14



Our main system is VERSIS, which is short for „insurance information system“. 

15



It was developed in the late 1990s in a cooperation between SAG and AO using

Natural/Adabas.

16



in 2008 we celebrated VERSIS‘ 10th birthday. And all of this was possible without writing

unit tests! Senior developers at our company didn‘t write any tests at all.

17



So why bother about unit testing, when everything works quite well?

18



I think the benefits of unit tests speak for themselves:

- You can safely refactor your code mercilessly.

- No more boring repetive slow and costly testing.

- Tests force you to write clean code.

- Developers get instant feedback.

19



But how do I get a Senior Developer to actually write some tests? Answer: Provide him

with an easy to use framework!

20



The most important aspect in my opinion is: the framework has to use the same 

language as the one you write your code in.

21



For Natural this of course means, that tests and production code should both be written

in Natural.

22



Let‘s take a closer look at NatUnit.

23



The framework was inspired by JUnit and therefore uses the same organisational 

structure for its tests.

24



A TestCase describes the context that we are testing, e.g. the wrapping of a string at a 

given line length.

25



A Test is a single functionality in the context, e.g. the string to wrap is longer than the

line length.

26



An Assertion is a simple comparison that is needed to verify the test, e.g. the resulting

array containing the wrapped string should have a length of 2.

27



In NatUnit TestCases are written as subprograms. The convention suggests using TC as a 

prefix for the modules‘ names.

28



A Test in NatUnit is written as a special IF statement. This may seem a bit weird at first, 

but the reason for this is that you can‘t call (inline) subroutines dynamically (i.e. by

providing its name in a variable/parameter) in Natural.

29



An Assertion is simply a call to an external subroutine that does the comparison. There

are already quite a few useful Assertions included with NatUnit but you can also easily

write your own.

30



This is a sample test for the wrapping of a string.

31



It starts with the description of the TestCase, the fixture. This is free text so it is easily

readable and understandable by developers.

32



The same holds true for the Tests: they are also defined as free text. A Test should

describe a single bit of functionality that gets tested including the expected outcome.

33



The implementation of the Test follows the AAA method: 

1) arrange the prerequisites needed to run the test (in this example: provide a text that

is longer than the line length)…

34



2) act: call the module under test (in the example the subroutine WRAP-STRING)…

35



3) assert: compare the actual results to the expected results (in the example: the string

should be split into two parts according to the line length).

36



Now how does the framework run these TestCases?

37



JUnit relies heavily on inheritance and the use of interfaces to make TestCases runnable, 

which is not possible in Natural.

38



Therefore, TestCases in NatUnit have to contain some additional code (PDAs, LDAs, 

INCLUDEs) to be recognized by the framework.

39



Now the TestCase can be executed by NatUnit, e.g. with NUSINGLE which runs a single

TestCase.

40



These are the results of the test run. 

41



Each dot at the bottom of the output represents a successful TestCase.

42



43



44



If the TestCase had failed, it would be represented by an F, an error (e.g. a Natural error) 

would be an E.

45



46



If a TestCase fails, the detailed information about what went wrong will be displayed on 

a separate screen.

47



48



Of course you can run multiple TestCases at once using NUNIT.

49



As you can see, each TestCase results in a dot.

50



51



The results of the NatUnit test runs can be exported (as an XML file) to a contiuous

integration server like Hudson.

http://hudson-ci.org/

52



As you can see, the tests run pretty fast (which is needed for them to be run as often as

possible).

53



54



This flow diagram shows the interaction between Natural/SVN/Hudson.

55



NatUnit itself was developed using TDD. You can run the internal TestSuite by calling

TESTNU.

56



Here‘s an overview of the internal tests‘ results.

57



58



TDD of a test framework seems a bit like a chicken-and-egg problem, if you would like to

know how I did it, check out my Master‘s thesis.

http://blog.stefan-macke.com/2009/12/29/nunit-a-unit-test-framework-for-natural/

59



If you want to get started writing unit tests, there are a few rules for writing good tests. I 

can‘t show all of them, but the most important ones are…

60



Tests need to be fast (i.e. milliseconds instead of seconds) to provide instant feedback to

the developer and they have to be easy to run (e.g. by starting a single program like

NUNIT) so the developer can run them as often as possible.

61



To make the Tests fast and reliable (i.e. producing the same results everytime they run), 

they are not allowed to cross boundaries, i.e. infrastructure components like databases, 

the network, or harddrives should not be accessed in the Tests or in the modules under

test.

62



That aporach seems reasonable (even if you do not write tests at all) and could easily be

implemented in green field projects.

63



However, most developers do not work on green field projects but on brown field

projects with existing code bases (also called Legacy Code).

64



Here‘s an example…

65



…this program is hard to test, because it does three things at once: access the database, 

process the data, and display the data. 

By the way: this is a program so you cannot test it at all because it returns no

parameters which could be asserted against.

66



So, you have to break down the different tasks into different modules, e.g. a 

subprogram/subroutine that only processes the data (business logic) given to it via PDAs 

and also returns its results. This way, the business logic can be tested separately from

the DB and the view.

67



However, this means hard work at first, especially if you work on a large existing code

base. Many existing programs will be hard to change and modularize.

68



The modularization combined with Tests that speak to the developer (they provide

examples/documentation of the code‘s behaviour) help the developers to understand

(even their own) code and do a better job changing and extending it.

http://blogs.msdn.com/peterhal/archive/2006/01/04/509302.aspx

http://www.codinghorror.com/blog/archives/000684.html

69



Once you start writing unit tests and see the advantages for your daily work you will 

never go back to not writing tests. You will get test infected (as Kent Beck calls it).

http://junit.sourceforge.net/doc/testinfected/testing.htm

70



To get started simply visit NatUnit on SourceForge.

71



72



73



74



75



76



77



78



79



80



81



82



83



84


