NatUnit

a unit test framework for
Natural

STEFAN MACKE
ALTE OLDENBURGE%S‘

Krankenversicherung AG

NatUnit — a unit test framework for Natural

© Stefan Macke
ALTE OLDENBURGER AG
Berlin, 08.05.2012

contact information:

- stefan@macke.it

- http://blog.macke.it
- @StefanMacke

NatUnit

a unit test iframework for
Natural

STEFAN MACKE
ALTE OLDENBURGE%S‘

Krankenversicherung AG

Most developers, when thinking of testing their applications, think of a very boring task.

This also held true for myself and most of my colleagues: we didn‘t like testing either.

_creativity

i

| always thought of programming as some kind of creative task compared to the
repetitive testing process.

When creating a program | could create something new and be constructive. However,
when testing | did quite the opposite: searching for bugs in the program, trying to make
it crash or behave unexpectedly, finding even the smallest flaws in the programmer’s
work.

Requirements

/

Design y

Implementation y

Verification ?

Maintenance

Additionaly, testing often gets deferred to the latest possible time in a project. And
whatever task is scheduled to be done last is prone to not getting done at all.

Sadly, this approach leads to what you may call a ,,banana product”: it (hopefully) ripes
at the customer’s office (which means that the customer finds the bugs and complains
about them to you).

So how do we make sure that our programs get tested thoroughly or even get tested at
all?

unit tests

Package Explorer Navigator (TN, =5

IFinished after 12,328 seconds i QR R

Runs: 69/69 8 Errors: 0 B Faiures: 0

The answer is automated tests for your application: unit tests. Recently, unit testing
became a de facto standard in software development, especially in agile development

processes. It all started with JUnit, a unit test framework for Java, developed by Kent
Beck and Erich Gamma.

Test Driven Development

als MafBinahme zur Qualitétssicherung
bei der Softwareentwicklung

am Beispiel eines Bestandsﬁihrungssystems

Masterarbeit

im Fachgebiet Software-Bngineering

n GEORG-SIMON-OHM
HOCHSCHULE NURNBERG

FAKULTAT

i loped
But there was no framework for Natural. So a little over two years ?gor; I Qe\i/rfsop:ctware
NL;tUnit a unit testing framework for Natural as part of my Master’s thesis
engineering.

sourceforge
. . NatUnit

WWiki Downloads Tickets Discussion

E & 8 ¢

Wiki Home Authors: & &

Browse Pages

Code

<[>

Browse

Piwik

Recently, we published the current version of the framework on SourceForge, a web

platform for hosting Open Source software.

http://sourceforge.net/p/natunit/

10

Free Software ‘g

Freeasin Freedom

NatUnit is licensed under LGPL, which means that you can download it for free, use it in
your production code and develop it further if you like, as long as you mention us as the
original authors of the framework.

Stefan Macke

stefan@macke.it
blog.macke.it
@StefanMacke

These are my contact information. Feel free to contact me.

12

| work at ALTE OLDENBURGER AG (AO), a small German private health insurance
company in northern Germany. We have almost 200 employees...

13

...about 20 of which are developers.

14

ke [VERSIS]]

|

Our main system is VERSIS, which is short for ,,insurance information system*.

15

0 T I 0 1

"

It was developed in the late 1990s in a cooperation between SAG and AO using
Natural/Adabas.

16

in 2008 we celebrated VERSIS* 10th birthday. And all of this was possible without writing
unit tests! Senior developers at our company didn‘t write any tests at all.

17

So why bother about unit testing, when everything works quite well?

18

provide

safety

force
clean
code

| think the benefits of unit tests speak for themselves:

- You can safely refactor your code mercilessly.

- No more boring repetive slow and costly testing.
- Tests force you to write clean code.

- Developers get instant feedback.

19

The number one goal is o
write a framework within which
we have some glimmer of
hope that developers will
actually write tests.

Erich Gamma

But how do | get a Senior Developer to actually write some tests? Answer: Provide him
with an easy to use framework!

20

The most important aspect in my opinion is: the framework has to use the same
language as the one you write your code in.

21

NATURAL

For Natural this of course means, that tests and production code should both be written

in Natural.

22

NatUnit

the framework

AEsuTe
TCREsT
Cug:

seage

sasLT

Sueuines

GETTESTCASE Soumce

TEsTs Aq-

[E—
TESTCASE

Tamsie

s2rouine LOG
ON ERAOR for ASSERTION ERROR

Maassgars.
EARCRIR = ASsERTIONERRCR

-

Let’s take a closer look at NatUnit.

23

The framework was inspired by JUnit and therefore uses the same organisational
structure for its tests.

24

S context (fixture)
Case wrapping a string

1

A TestCase describes the context that we are testing, e.g. the wrapping of a string at a
given line length.

S context (fixture)
Case wrapping a string

1

functionality
string Is longer than line

A Test is a single functionality in the context, e.g. the string to wrap is longer than the
line length.

S context (fixture)
Case wrapping a string

1

functionality
string Is longer than line

comparison
*OCC(#RESULTS) EQ 2

An Assertion is a simple comparison that is needed to verify the test, e.g. the resulting
array containing the wrapped string should have a length of 2.

(@ TCCAHASH Subprogram
@B TCEXRISK Subprogram
U@ TCGARXML Subprogram

In NatUnit TestCases are written as subprograms. The convention suggests using TC as a
prefix for the modules’ names.

@ TCCAHASH Subprogram
@B TCEXRISK Subprogram
U@ TCGARXML Subprogram

IF NUTESTP.TEST EQ 's

Eale i e e e S e e S S e e e e e i e S

I IF NUTESTP.TEST EQ 's

‘ ol e e e e e S e e S e S e e S e e e e

A Test in NatUnit is written as a special IF statement. This may seem a bit weird at first,
but the reason for this is that you can‘t call (inline) subroutines dynamically (i.e. by
providing its name in a variable/parameter) in Natural.

29

@ TCCAHASH Subprogram
@B TCEXRISK Subprogram
U@ TCGARXML Subprogram

IF NUTESTP.TEST EQ 's

Eale i e e e S e e S S e e e e e i e S

I IF NUTESTP.TEST EQ 's

‘ ol e e e e e S e e S e S e e S e e e e

PERFORM ASSERT-NUM-
PERFORM ASSERT-STRI
PERFORM ASSERT-STRI

An Assertion is simply a call to an external subroutine that does the comparison. There
are already quite a few useful Assertions included with NatUnit but you can also easily
write your own.

/Q

NUTESTP.FIXTURE :=

'"Wrap a string at a given line length'
*

e e e e vk e ok o 3 e e ok ok e ok ok ok o ok e o ok e ok ok ok ok ok ke ok ok o ok ok ok ok ok o o ok ke ok ok ok ok ke ek
IF NUTESTP.TEST EQ

'string longer than line length should be wrapped'’
e e e e 3 e S e o ok ke ok ok o e ok o ok o o ok ok ok ok ok ok ok ok ek ek ek ek ke ke ok e ok ke ke ok

TEXT := 'Test 123

LINE-LENGTH := 6

PERFORM WRAP-STRING TEXT LINE-LENGTH TEXT-ARRAY (*)

#NR-OF-LINES := *OCC (TEXT-ARRAY)

PERFORM ASSERT-NUM-EQUALS 2 #NR-OF-LINES

PERFORM ASSERT-STRING-SAME 'Test 1' TEXT-ARRAY (1)

PERFORM ASSERT-STRING-SAME '23' TEXT-ARRAY (2)
END-IF

This is a sample test for the wrapping of a string.

NUTESTP .FIXTURE :=
'"Wrap a string at a given lin

NUTESTP.FIXTURE :=

'"Wrap a string at a given line length'
%

kkkkhhkdhhkhkhdhkhhhkdhhhhkhhkhhkhdkhkhdhkhhhkdhkkkhhhkhkhkkhkk
IF NUTESTP.TEST EQ

'string longer than line length should be wrapped'’
de e o Je o e e e e e e o ok ok ok ok e o e e ok ok ok ok ke ok o ok ok ok o ok e ok o e e ok ok ok ok ok o ok o e b ok

TEXT := 'Test 123'

LINE-LENGTH := 6
*

PERFORM WRAP-STRING TEXT LINE-LENGTH TEXT-ARRAY (*)
*

#NR-OF-LINES := *0OCC (TEXT-ARRAY)

PERFORM ASSERT-NUM-EQUALS 2 #NR-OF-LINES

PERFORM ASSERT-STRING-SAME 'Test 1' TEXT-ARRAY (1)

PERFORM ASSERT-STRING-SAME '23' TEXT-ARRAY (2)
END-IF

It starts with the description of the TestCase, the fixture. This is free text so it is easily
readable and understandable by developers.

IF NUTESTP.TEST EQ

'string longer than line leng
NUTESTP.FIXTURE :=

'"Wrap a string at a given line length'

L 11 Lalle 1Cl

i
- |

*
e e e 3 e e e 3 vk o e ok e ok ok e e e ok e ok e o ko ok ok e e e ok ok e e ok e ke ke ok ek ok e ke
IF NUTESTP.TEST EQ

'string longer than line length should be wrapped'
Je e v 3 3 e de d e e ok ok ok ek o ok ok ok ok ok ok ok ok e ok ok ok e ok e ok ke ke ok

TEXT := 'Test 123
LINE-LENGTH := 6

PERFORM WRAP-STRING TEXT LINE-LENGTH TEXT-ARRAY (*)

*
#NR-OF-LINES := *OCC (TEXT-ARRAY)
PERFORM ASSERT-NUM-EQUALS 2 #NR-OF-LINES
PERFORM ASSERT-STRING-SAME 'Test 1' TEXT-ARRAY (1)

PERFORM ASSERT-STRING-SAME '23' TEXT-ARRAY (2)
END-IF

The same holds true for the Tests: they are also defined as free text. A Test should
describe a single bit of functionality that gets tested including the expected outcome.

TEXT := 'Test 12
LINE-LENGTH := 6

NUTESTP.FIXTURE :=

- T y '~ | 1 Ty e y 1 ~ T TrAaT

1) 4 o UL LIIY alL da UlLveEell

‘31

*
dedede ke dededed ek de ke de ke de ke de ke ek ke ke de ek ke ek ek ke ke ek ek ok
IF NUTESTP.TEST EQ

'string longer than line length should be wrapped

*hkkkhkhkhhhkhkhdkhkhkkhkdkhhkdbhhhbdhhkdrhbhdhbhhkdhrdkdhhbhbdhrhhbhkhdhhhkhhkk

TEXT := 'Test 123'
LINE-LENGTH :=

PERFORM WRAP-STRING TEXT LINE-LENGTH TEXT-ARRAY (*)

#NR-OF-LINES := *OCC (TEXT-ARRAY)

PERFORM ASSERT-NUM-EQUALS 2 #NR-OF-LINES

PERFORM ASSERT-STRING-SAME 'Test 1' TEXT-ARRAY (1)

PERFORM ASSERT-STRING-SAME '23' TEXT-ARRAY (2)
END-IF

The implementation of the Test follows the AAA method:
1) arrange the prerequisites needed to run the test (in this example: provide a text that
is longer than the line length)...

PERFORM WRAP-STRING TEXT LINE-I

NUTESTP.FIXTURE :=

'"Wrap a string at a given line length'
*
F e de d e o e de e e e e ok ok o ko b ke e ok ok e ok ok o e b ok e dk ok o ok e ok e e e ke ok ok ok ok ok ok o e b ok
IF NUTESTP.TEST EQ

'string longer than line length should be wrapped’
F e de e de d e d e e e de ok o ok ok e ok ok ok ok ok ok e e b ok ok e dk ok o ok e ok e e e o ok o ok ok ok o e e b ok

TEXT := 'Test 123'

LINE-LENGTH := 6
*

PERFORM WRAP-STRING TEXT LINE-LENGTH TEXT-ARRAY (*)
*

#NR-OF-LINES := *0OCC (TEXT-ARRAY)

PERFORM ASSERT-NUM-EQUALS 2 #NR-OF-LINES

PERFORM ASSERT-STRING-SAME 'Test 1' TEXT-ARRAY (1)

PERFORM ASSERT-STRING-SAME '23' TEXT-ARRAY (2)

END-TF

2) act: call the module under test (in the example the subroutine WRAP-STRING)...

35

ASSERT-NUM-EQUALS 2 #NR-OF-LI
ASSERT-STRING-SAME 'Test 1' TE

NUTESTP.FIXTURE :=

H
Fkkkkdkdkhddkddkdkkdkkdkkkkkkhkkhkkkkhkdhkddddkdkdkddkddkkdkkkkkkkkk
IF NUTESTP.TEST EQ

% J v d d d e e g ok ok ok o e ok ok gk ok Sk ok b ok ok ok ok o ok ok o o ok ok ok ok ok ke e ok ok ke ke ok
TEXT := ,
LINE-LENGTH :=

PERFORM WRAP-STRING TEXT LINE-LENGTH TEXT-ARRAY (*)

#NR-OF-LINES := *OCC (TEXT-ARRAY)

PERFORM ASSERT-NUM-EQUALS 2 #NR-OF-LINES

PERFORM ASSERT-STRING-SAME 'Test 1' TEXT-ARRAY (1)

PERFORM ASSERT-STRING-SAME '23' TEXT-ARRAY(2)
END-IF

3) assert: compare the actual results to the expected results (in the example: the string
should be split into two parts according to the line length).

«interface»

T

MyTestCase

TestResult |
Test
+ run(TestResulf) : void
< ©
TestCase 5
+ run(TestResult) : void T Sun
+ runTest(String) : void |
+ setUp() : void + addTest(Test) : void
+ tearDown() : void + run(TestResult) : void

Now how does the framework run these TestCases?

37

N i

TestResult {«interface») P

+ run(TestResulf) : void
< ©
TestCase 5
+ run(TestResult) : void T Sun
+ runTest(String) : void e |
+ setUp() : void + addTest(Test) : void
& tearDom void + run(TestResult) : void

\ 1]

MyT‘bsiéase

JUnit relies heavily on inheritance and the use of interfaces to make TestCases runnable,
which is not possible in Natural.

DEFINE DATA

PARAMETER USING NUTESTP
LOCAT, USING NUCONST
LOCAL USING NUASSP
END-DEFINE

INCLUDE NUTCTEMP

INCLUDE NUTCSTUB
*

DEFINE SUBROUTINE TEST

END-SUBROUTINE

Therefore, TestCases in NatUnit have to contain some additional code (PDAs, LDAs,
INCLUDES) to be recognized by the framework.

39

™ Terminalermulation ‘ERSIS-Entwicklung: macke [VERSISENTW]
‘B Profil Bearbeiten Ansicht Terminal Extras Fenster Hilfe
A I A - A R

Now the TestCase can be executed by NatUnit, e.g. with NUSINGLE which runs a single
TestCase.

40

- Termi 9

@le|lae|rml- -|=~

2w =

1704 | [Il migi[el | i

|Itidtﬂ§= Standard Farbtins_hllulﬁ

These are the results of the test run.

41

[— —

|Il;idt_di= Standard Farbeins_ullurﬁ

Each dot at the bottom of the output represents a successful TestCase.

42

|Il;idt_di= Standard Farbt_ins_ullurﬁ

43

|Il;idt_di= Standard Farbeins_ullurﬁ

44

|Il;idtdi=5hnd_mi Farhzins_bellurﬁ

If the TestCase had failed, it would be represented by an F, an error (e.g. a Natural error)
would be an E.

45

—
Bl F

IE

pelm

Hﬂ"ﬂ"'

? R

104

FEIDIGIE

|Il;idtdi=5hnd_mi Farhzins_bellurﬁ

E—

G

46

|slnalelcale s/ mml--|~v/zws

|Il;idt_d52 Standard Fnrhzins_hellurﬁ

If a TestCase fails, the detailed information about what went wrong will be displayed on
a separate screen.

47

|Il;idt_d52 Standard Fnrhzins_hellurﬁ

48

30

nﬂrﬂroﬁlﬂﬂe'arhcqil;eénsichte-IreﬂninJ-«Ead:ﬁFEemrq-rlfg

B"'IBI]EHQI]E‘I]JI@HF‘ - e

Of course you can run multiple TestCases at once using NUNIT.

7w

49

v Hilfe

10wl -[~-lew|s

Iltidtdiz Standard Farhel;ns_bellulﬁ

764 | [2liElBlsmes] |

As you can see, each TestCase results in a dot.

50

Bxras Fenster Hilfe

Jl"ﬂliﬂﬂ‘ .I!'A.'

g =

|Itidtdi= Standard Farheins_bellurﬁ

51

Hudson

l' {

Hudson » NUNIT »

‘ Zurick zur Ubersicht
O Status
-; Anderungen

Arbeltsberelch

*

- Build-Yerlauf (Trend)

FY Y I

#3804
#3803
#802
#3801
#3800
#799

11.04.2012 23:30:50
10.04.2012 23:30:50
09.04.2012 23:30:50
08.04.2012 23:30:50
07.04.2012 23:30:50
06.04.2012 23:30:50

L (h #7928 NS N4 2012 23:30:80

Gesamt-NUNIT » Nunit

Projekt Nunit

Ausfihren der Nunit-Tests auf dem Entwicklun
Trend

5000
4500
4000
3500
3000
2500
2000
1500
1000

500

count

#775
#776
®777
#778
#779

#780

#781

#782
#783
#784

The results of the NatUnit test runs can be exported (as an XML file) to a contiuous
integration server like Hudson.

http://hudson-ci.org/

52

Testergebnis : (root)

Fehlschlé’ie iini

Tests (£0)
Dauer: 1,5 Sekunden

Alle Tests

Klasse Dauer Fehlgeschlagen (Diff.) Ubersprungen (Diff.) Summe (Diff.)
CAR 1ms 1] 0 6

sue 69 ms 0 0 81
UTILITY 0,38 Sekunden 0 0 368
V-SYSTEM 1 Sekunde 0 0 3854
Y-USER 30 ms 0 0 676

As you can see, the tests run pretty fast (which is needed for them to be run as often as
possible).

Tests (£0)
Dauer: 1,5 Sekunden

Summe (Diff.)

81
368
3854
676

cea,
.....
.....

| Tests (£0)
Dauer: 1,5 Sekunden

(iff.) Ubersprungen (Diff.)

Q0|0 |0|Q

Summe (Diff.)
6
81
368 |
3854
676

54

commit % : ~—
4

SUBVERSION

Alle Nunit-Tests
Alle Batch-lobs | NUNIT sa

W View p OSt
E Gesamt-NUNIT c o m m it

<€

call NUNIT
=S
create XML

This flow diagram shows the interaction between Natural/SVN/Hudson.

55

™ Terminalemulation S>=entwickiul 13!

'ﬁﬂroﬁlﬁﬂe.a'rbtiuisithtﬂ !n?ﬁnfﬁms—'fen'sterﬂlfeﬁ

__ Bleloe| rm|- |- vl]re?!

NatUnit itself was developed using TDD. You can run the internal TestSuite by calling
TESTNU.

56

o@|®|pelrm

e e e e e e m—
Ladt die Standard Farbzinstellung 64 1 !; 6 ; 8119).1 &

Here’s an overview of the internal tests’ results.

57

[I — — l;ﬂgﬂgﬂgl |_l

Ladt die Standard Farbeinstellung [l [21[3][4][s][s]i7]Le](a] |

58

TDD of a test framework seems a bit like a chicken-and-egg problem, if you would like to
know how I did it, check out my Master’s thesis.

http://blog.stefan-macke.com/2009/12/29/nunit-a-unit-test-framework-for-natural/

59

good
unit tests...

If you want to get started writing unit tests, there are a few rules for writing good tests. |
can‘t show all of them, but the most important ones are...

60

...dle

fast
and

easily
runnable

Tests need to be fast (i.e. milliseconds instead of seconds) to provide instant feedback to
the developer and they have to be easy to run (e.g. by starting a single program like
NUNIT) so the developer can run them as often as possible.

61

...do not cross /
boundaries |

To make the Tests fast and reliable (i.e. producing the same results everytime they run),
they are not allowed to cross boundaries, i.e. infrastructure components like databases,
the network, or harddrives should not be accessed in the Tests or in the modules under
test.

That aporach seems reasonable (even if you do not write tests at all) and could easily be
implemented in green field projects.

63

However, most developers do not work on green field projects but on brown field
projects with existing code bases (also called Legacy Code).

64

READ IMPORTANT-DDM BY SUPERDESCRIPTOR
*

IF FIELD EQ 'value'
* insert business loglic here

ELSE

ESCAPE TOP

END-IF

¥

INPUT USING MAP 'OUTPUT'
*

END-READ

Here’s an example...

65

READ IMPORTANT-DDM BY SUPERDESCRIPTOR
*

IF FIELD EQ 'value'
* insert business logic here

ELSE

ESCAPE TOP

END-IF

¥

INPUT USING MAP 'OUTPUT'
*

END-READ

...this program is hard to test, because it does three things at once: access the database,
process the data, and display the data.

By the way: this is a program so you cannot test it at all because it returns no
parameters which could be asserted against.

DEFINE DATA
PARAMETER USING BUSIPARA
END-DEFINE
*
IF FIELD EQ 'wvalue'
* insert business logic here
ELSE

RETURNCODE := C-RC-ERROR
END-TIF
*

END

So, you have to break down the different tasks into different modules, e.g. a
subprogram/subroutine that only processes the data (business logic) given to it via PDAs
and also returns its results. This way, the business logic can be tested separately from
the DB and the view.

However, this means hard work at first, especially if you work on a large existing code
base. Many existing programs will be hard to change and modularize.

68

daily work of a software developer
(according to Peter Hallam and Jeff Atwood)

290 write new code

2o edit old code

7 understand old code

The modularization combined with Tests that speak to the developer (they provide
examples/documentation of the code’s behaviour) help the developers to understand
(even their own) code and do a better job changing and extending it.

http://blogs.msdn.com/peterhal/archive/2006/01/04/509302.aspx
http://www.codinghorror.com/blog/archives/000684.html

69

get test
infected!

Once you start writing unit tests and see the advantages for your daily work you will
never go back to not writing tests. You will get test infected (as Kent Beck calls it).

http://junit.sourceforge.net/doc/testinfected/testing.htm

70

To get started simply visit NatUnit on SourceForge.

71

72

picture credits

73

johnmarchan

www.flickr.com/photos/johnmarchan
1562116408/

ferrantraite

www.istockphoto.com/stock-photo-
6080208-bored-businessman.php

yuan2003

www.flickr.com/photos/yuan2003/13
0559143/

74

Pedro Simoes

www.flickr.com/photos/pedrosimoes
7/190673196/

416style

www.flickr.com/photos/sookie/3635
6334/

Christy C
www.flickr.com/photos/christy _chen/
3603006756/

75

Implementation

Maintenance

Paul Smith

en.wikipedia.org/wiki/File:Waterfall_

model %281%29.svg

sanja gjenero
www.sxc.hu/photo/1186300

Package Explorer Navigator m

Finshed after 12,328 seconds Q, Rl

Runs: 69/69 B Ermors: 0 8 Faiures: 0

Ben Hermann

www.flickr.com/photos/theredroom/
121963809/

76

Murat Giray Kaya

www.istockphoto.com/stock-photo-
7529059-desperate-
businessman.php

longhairthai.com

www.flickr.com/photos/longhairthai/
3280485878/

sanja gjenero
www.sxc.hu/photo/1064586

77

Ove Topfer
www.sxc.hu/photo/998524

Arnett Gill

www.flickr.com/photos/gagillphoto/3
336353424/

harald walker

www.flickr.com/photos/sonicwalker/
322373355/

78

Tamlyn Rhodes
www.sxc.hu/photo/499571

lvonneW

www.istockphoto.com/stock-photo-
8566536-isolated-chicken-with-

egg.php

sanja gjenero
www.sXxc.hu/photo/731544

79

JasonGulledge

www.flickr.com/photos/ramdac/3738
81476/

Nispa
www.sxc.hu/photo/678805

Igor Dugonjic
www.sXxc.hu/photo/859291

80

Thomas Lobker
www.sxc.hu/photo/175983

jan flaska
www.sxc.hu/photo/1113494

degem

www.flickr.com/photos/degem/9230
4899/

81

Kristin Bradley

www.flickr.com/photos/krikit/288075
6271/

Bliz
www.istockphoto.com/stock-photo-
4400982-good-news.php

Michal Zacharzewski
www.sxc.hu/photo/431263

82

Michele

www.flickr.com/photos/damaradeael
la/2822846819/

sanja gjenero
www.sxc.hu/photo/779191

83

NatUnit
fmacke.it/NatUnit

STEFAN MACKE
ALTE 0LDEN§UBhGEfﬁ‘

84

